首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   653篇
  免费   60篇
  国内免费   2篇
  2023年   7篇
  2022年   2篇
  2021年   37篇
  2020年   21篇
  2019年   19篇
  2018年   24篇
  2017年   9篇
  2016年   27篇
  2015年   36篇
  2014年   34篇
  2013年   36篇
  2012年   54篇
  2011年   51篇
  2010年   38篇
  2009年   33篇
  2008年   32篇
  2007年   32篇
  2006年   24篇
  2005年   21篇
  2004年   25篇
  2003年   17篇
  2002年   23篇
  2001年   11篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1994年   3篇
  1993年   2篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1985年   3篇
  1984年   10篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1974年   5篇
  1973年   4篇
  1972年   2篇
  1937年   1篇
  1932年   1篇
排序方式: 共有715条查询结果,搜索用时 31 毫秒
81.
Class I myosins have a single heavy chain comprising an N-terminal motor domain with actin-activated ATPase activity and a C-terminal globular tail with a basic region that binds to acidic phospholipids. These myosins contribute to the formation of actin-rich protrusions such as pseudopodia, but regulation of the dynamic localization to these structures is not understood. Previously, we found that Acanthamoeba myosin IC binds to acidic phospholipids in vitro through a short sequence of basic and hydrophobic amino acids, BH site, based on the charge density of the phospholipids. The tail of Dictyostelium myosin IB (DMIB) also contains a BH site. We now report that the BH site is essential for DMIB binding to the plasma membrane and describe the molecular basis of the dynamic relocalization of DMIB in live cells. Endogenous DMIB is localized uniformly on the plasma membrane of resting cells, at active protrusions and cell-cell contacts of randomly moving cells, and at the front of motile polarized cells. The BH site is required for association of DMIB with the plasma membrane at all stages where it colocalizes with phosphoinositide bisphosphate/phosphoinositide trisphosphate (PIP(2)/PIP(3)). The charge-based specificity of the BH site allows for in vivo specificity of DMIB for PIP(2)/PIP(3) similar to the PH domain-based specificity of other class I myosins. However, DMIB-head is required for relocalization of DMIB to the front of migrating cells. Motor activity is not essential, but the actin binding site in the head is important. Thus, dynamic relocalization of DMIB is determined principally by the local PIP(2)/PIP(3) concentration in the plasma membrane and cytoplasmic F-actin.  相似文献   
82.
Copper plays vital roles in the active sites of cytochrome oxidase and in several other enzymes essential for human health. Copper is also highly toxic when dysregulated; because of this an elaborate array of accessory proteins have evolved which act as intracellular carriers or chaperones for the copper ions. In most cases chaperones transport cuprous copper. This review discusses some of the chemistry of these copper sites, with a view to some of the structural factors in copper coordination which are important in the biological function of these chaperones. The coordination chemistry and accessible geometries of the cuprous oxidation state are remarkably plastic and we discuss how this may relate to biological function. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   
83.
Vector-borne diseases constitute an enormous burden on public health across the world. However, despite the importance of interactions between infectious pathogens and their respective vector for disease transmission, the biology of the pathogen in the insect is often less well understood than the forms that cause human infections. Even with the global impact of Plasmodium parasites, the causative agents of malarial disease, no vaccine exists to prevent infection and resistance to all frontline drugs is emerging. Malaria parasite migration through the mosquito host constitutes a major population bottleneck of the lifecycle and therefore represents a powerful, although as yet relatively untapped, target for therapeutic intervention. The understanding of parasite-mosquito interactions has increased in recent years with developments in genome-wide approaches, genomics and proteomics. Each development has shed significant light on the biology of the malaria parasite during the mosquito phase of the lifecycle. Less well understood, however, is the process of midgut colonisation and oocyst formation, the precursor to parasite re-infection from the next mosquito bite. Here, we review the current understanding of cellular and molecular events underlying midgut colonisation centred on the role of the motile ookinete. Further insight into the major interactions between the parasite and the mosquito will help support the broader goal to identify targets for transmission-blocking therapies against malarial disease.  相似文献   
84.
We report the identification of a novel series of human epithelial sodium channel (ENaC) blockers that are structurally distinct from the pyrazinoyl guanidine chemotype found in prototypical ENaC blockers such as amiloride. Following a rational design hypothesis a series of quaternary amines were prepared and evaluated for their ability to block ion transport via ENaC in human bronchial epithelial cells (HBECs). Compound 11 has an IC(50) of 200nM and is efficacious in the Guinea-pig tracheal potential difference (TPD) model of ENaC blockade with an ED(50) of 44μgkg(-1) at 1h. As such, pyrazinoyl quaternary amines represent the first examples of a promising new class of human ENaC blockers.  相似文献   
85.

Background

Activation of the Wnt signaling pathway is implicated in aberrant cellular proliferation in various cancers. In 40% of endometrioid ovarian cancers, constitutive activation of the pathway is due to oncogenic mutations in β-catenin or other inactivating mutations in key negative regulators. Secreted frizzled-related protein 4 (SFRP4) has been proposed to have inhibitory activity through binding and sequestering Wnt ligands.

Methodology/Principal Findings

We performed RT-qPCR and Western-blotting in primary cultures and ovarian cell lines for SFRP4 and its key downstream regulators activated β-catenin, β-catenin and GSK3β. SFRP4 was then examined by immunohistochemistry in a cohort of 721 patients and due to its proposed secretory function, in plasma, presenting the first ELISA for SFRP4. SFRP4 was most highly expressed in tubal epithelium and decreased with malignant transformation, both on RNA and on protein level, where it was even more profound in the membrane fraction (p<0.0001). SFRP4 was expressed on the protein level in all histotypes of ovarian cancer but was decreased from borderline tumors to cancers and with loss of cellular differentiation. Loss of membrane expression was an independent predictor of poor survival in ovarian cancer patients (p = 0.02 unadjusted; p = 0.089 adjusted), which increased the risk of a patient to die from this disease by the factor 1.8.

Conclusions/Significance

Our results support a role for SFRP4 as a tumor suppressor gene in ovarian cancers via inhibition of the Wnt signaling pathway. This has not only predictive implications but could also facilitate a therapeutic role using epigenetic targets.  相似文献   
86.
Olshina MA  Wong W  Baum J 《IUBMB life》2012,64(5):370-377
Parasites from the phylum Apicomplexa are responsible for several major diseases of man, including malaria and toxoplasmosis. These highly motile protozoa use a conserved actomyosin-based mode of movement to power tissue traversal and host cell invasion. The mode termed as 'gliding motility' relies on the dynamic turnover of actin, whose polymerisation state is controlled by a markedly limited number of identifiable regulators when compared with other eukaryotic cells. Recent studies of apicomplexan actin regulator structure-in particular those of the core triad of monomer-binding proteins, actin-depolymerising factor/cofilin, cyclase-associated protein/Srv2, and profilin-have provided new insights into possible mechanisms of actin regulation in parasite cells, highlighting divergent structural features and functions to regulators from other cellular systems. Furthermore, the unusual nature of apicomplexan actin itself is increasingly coming into the spotlight. Here, we review recent advances in understanding of the structure and function of actin and its regulators in apicomplexan parasites. In particular we explore the paradox between there being an abundance of unpolymerised actin, its having a seemingly increased potential to form filaments relative to vertebrate actin, and the apparent lack of visible, stable filaments in parasite cells.  相似文献   
87.
The capsid (core antigen, HBcAg) is one of three major antigens present in patients infected with Hepatitis B virus. The capsids are icosahedral particles, whose most prominent features are spikes that extend 25 Å out from the contiguous “floor”. At the spike tip are two copies of the “immunodominant loop”. Previously, the epitopes of seven murine monoclonal antibodies have been identified by cryo-EM analysis of Fab-labeled capsids. All but one are conformational and all but one map around the spike tip. The exception, which is also the tightest-binder, straddles an inter-molecular interface on the floor. Seeking to relate these observations to the immunological response of infected humans, we isolated anti-cAg antibodies from a patient, prepared Fabs, and analyzed their binding to capsids. A priori, one possibility was that many different Fabs would give an undifferentiated continuum of Fab-related density. In fact, the density observed was highly differentiated and could be reproduced by modeling with just five Fabs, three binding to the spike and two to the floor. These results show that epitopes on the floor, far (~30 Å) from the immunodominant loop, are clinically relevant and that murine anti-cAg antibodies afford a good model for the human system.  相似文献   
88.
In most adult humans, hepatitis B is a self-limiting disease leading to life-long protective immunity, which is the consequence of a robust adaptive immune response occurring weeks after hepatitis B virus (HBV) infection. Notably, HBV-specific T cells can be detected shortly after infection, but the mechanisms underlying this early immune priming and its consequences for subsequent control of viral replication are poorly understood. Using primary human and mouse hepatocytes and mouse models of transgenic and adenoviral HBV expression, we show that HBV-expressing hepatocytes produce endoplasmic reticulum (ER)-associated endogenous antigenic lipids including lysophospholipids that are generated by HBV-induced secretory phospholipases and that lead to activation of natural killer T (NKT) cells. The absence of NKT cells or CD1d or a defect in ER-associated transfer of lipids onto CD1d results in diminished HBV-specific T and B cell responses and delayed viral control in mice. NKT cells may therefore contribute to control of HBV infection through sensing of HBV-induced modified self-lipids.  相似文献   
89.
90.
X Li  J Montgomery  W Cheng  JH Noh  DR Hyde  L Li 《PloS one》2012,7(7):e40508
In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号